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In aero engines, amplitudes of blade vibrations are frequently reduced by
centrifugal flyweights, called friction peak limiters, which exert a dry friction force
under the blade platforms. To understand the physical phenomena which cause
reduction of vibration amplitudes, a system comprising two degrees of freedom, but
generally representative of a real system, is studied. It is shown that system
response can be found by analyzing the sliding and the stuck state. It appears
therefore that the most important phenomenon controlling movement is the
change of boundary conditions. In addition, the effect of other parameters is
analyzed. The effect of a large difference between the fundamental frequencies is
demonstrated as well as the influence of the dynamic friction coefficient for
lengthening the plateau of the efficiency curve. All these results can be used to
improve numerical methods of resolution.

© 1999 Academic Press

1. INTRODUCTION

In aero engines, aeroelastic coupling effects can cause large displacements and
severe stresses in the structure. Fluctuating stresses, even of moderate intensity,
may thus cause material failure through fatigue. The engineer must therefore find
suitable devices to control vibration in the system. One such device currently used
in aero engines to limit these vibrations consists of a centrifugal flyweight that
creates a dry friction contact under two adjacent blade platforms (Figure 1). This
system will be called “dry friction peak limiter” in this paper.

Friction damping has received considerable attention from a number of
researchers. Hartog [1] and Hundal [2] determined the response of
a single-degree-of-freedom system with a rigid friction damper subjected to
harmonic excitation. However, in the case of a multiple degree of freedom, the
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Figure 1. Blade with dry friction system.

number of simultaneous equations to be solved becomes prohibitively large and the
method is inefficient. Time integration can be applied but, for very low damping
levels, these methods can be computationally expensive. Griffin [3], Ostachowicz
[4], Dowell and Schartz [5, 6] used the harmonic balance method. Although this
method is efficient, its results are accurate only for continuous slip motion since the
response is limited to a single harmonic approximation. Ferri [7] and Ferri and
Dowell [ 8] applied the technique of the multi-harmonic frequency domain solution
to analyze the steady state response of a system with dry friction. This method,
compared with time integration, produces very good results, showing that the effect
of higher harmonics is significant when stick-slip motion occurs. Cameron and
Griffin [9] Cardonna et al. [10] have improved the numerical efficiency of this
method by the introduction of the FFT algorithm.

Most analyses consider the friction interface to be constrained to
one-dimensional motion. For contact at a point, a macro-slip model is sufficient
[11] but when the friction contact is large, a micro-slip model [12], in which only
a part of the interface may be slipping while the other part remains stuck, is
necessary. This micro-slip model is also necessary in applications where the
assumption of one-dimensional motion is not valid. This is the case for turbine
blades where there is often coupling between motion of the structure such as
bending and torsion. Toufine et al. [13] analyze this problem by considering that
the direction of the sliding motion is known. Menq et al. [14] and Sanliturk and
Ewins [15] analyze the general case of elliptical motion across a friction interface
with constant normal force.

To apply these methods to industrial cases with many degrees of freedom, it is
necessary to reduce the size of the system. Dowell [ 5] proposed a component mode
analysis with the mode of the structure without dampers. Kormarz et al. [11] used
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the modal effective parameters, as defined by Girard and Roy [16], which allow
a comprehensive description of the eigenmodes and the control of the truncation
effects. Berthillier et al. and Touffine et al. [17,18] preferred the Craig-Bampton
component mode synthesis where the retained degree of freedom included those
where frictional force is applied. This technique is particularly interesting because
the mass and stiffness matricés can easily be obtained from a finite-element code.
The conclusions of all these studies are generally similar: the friction peak limiter
efficiency is limited to a range of excitation forces corresponding to stick and slip in
the friction zone.
Although studies generally correlate well with experimental results, they do not
answer the following important questions:

— what is the physical origin of the limitation of the displacement response of
a dry friction system?

— is energy dissipation by the dry friction system the principal parameter
governing system response?

— why does discontinuity appear on the response curve at some excitation force
amplitudes?

— what is the importance of the different parameters?

The aim of this present study is to answer these questions by analyzing
a simplified mechanical system, comprising only two degrees of freedom, but
generally representative of a real problem.
To verify our hypothesis and proposed methods, a complete non-linear study has
been carried out and used as a reference.

2. STUDY OF THE SIMPLIFIED SYSTEM

2.1. PHYSICAL DESCRIPTION

To determine the dynamic behaviour of a real structure, the finite-element
method is generally used and to achieve the numerical resolution of equations of
motion in the case of a non-linear system the size of the model must be reduced.
For example, Korkmaz et al. [11] use the modal effective parameters and divide the
structure into two parts:

(1) Between the clamped end and the dry friction contact point, which is modelled
by a beam with two degrees of freedom,;

(2) From the contact zone up to the free end, which is modelled by the modal
effective parameters, also with two degrees of freedom.

By analogy, the mechanical system analyzed in this paper is reduced to two
degrees of freedom. While Korkmaz et al. [11] has employed a lateral model to
analyze the bending mode, in this article we have used an axial model which has the
same overall dynamic behaviour. In this model two spring-mass-dampers are
connected in series where the rigid masses m, and m; are both assumed to move
along the same horizontal line. The individual masses can be located at any time by
the two co-ordinates X, and X . Thus the system has two degrees of freedom. The
massless spring has a linear force deflection relationships denoted by the spring
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Figure 2. Two degrees of freedom model. m; =09 Kg, m, =13Kg, ¢; =c¢,; =2:53 Ns/m,
¢, =10"* Ns/m, k; = 6 x 10° N/m, k, = 2x 10° N/m, k, = 7 x 10" N/m p = 0-4.

constants k, and k. Similarly, the massless dampers exhibit linear force-velocity
relationships denoted by the damping coefficients ¢, and ¢;. Mass m, is subjected to
a dry friction force. The system comprising k;, m; and ¢, represents the blade root.
Similarly, the system comprising k,, m,, ¢, represents the outer part of the blade.
The system is loaded by an excitation force Pi(t) = Psin(wt) acting on mass
m, where P denotes the amplitude and o the frequency. The different parameter
values are indicated in Figure 2.

2.2. DRY FRICTION MODELLING

Ferrero and Barrau [19] show that, for small displacements at low speeds,
a friction link can correctly be represented:

— in the stuck state: by spring of stiffness k, and a viscous damper ¢, which
represent the asperity junction. The stiffness value k, is a function of the normal
contact force Fy;

— 1in the sliding state: by a dry runner characterized by a dynamic friction
coefficient ug.

The transition from one state to the other is governed by the value of the static
coefficient u,, which depends on the previous states. After several stuck phases of
short duration, Ferrero and Barrau [ 19] show that the static coefficient value tends
towards the dynamic coefficient value denoted by ug.

Since in this problem the duration of stuck phases is very short, the dry runner
releasing threshold will thus be equal to u4. Fx and py will be supposed constant.
Moreover, for aero engine blades the normal force Fy is created by the centrifugal
force and does not vary, in which case the two parameters k, and ¢, can be
considered constant. The dry friction law used is similar to the one used by
Korkmaz et al., [11] as described by the following relations:

Fr=pq m Fy  if Fip > ugFy during sliding state, (1

Fr=Fy = k(X — Xg) + X if Fip < ugFy during stuck state, ()

where Fp denotes the tangential force and Fj,, is the interface force.
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In these relationships, X is the relative speed at the friction contact point and Xj;, is
a parameter ensuring the continuity of the tangential force between the stuck and
sliding states. Wang and Shieh [20] and Anderson and Ferri [21] consider the case
where the normal force is variable.

3. CONVENTIONAL NON-LINEAR RESOLUTION OF THE SIMPLIFIED
SYSTEM
To form a basis for comparison and also to validate our methodological
approach, a complete non-linear study has been carried out from methods
developed by Korkmaz et al. [11] and Toufine et al. [13] and verified
experimentally by these authors.

3.1. METHODOLOGY

The problem has been resolved by direct integration of the equations of
motion using the Newmark method. Initially, it is supposed that the friction
interface is in a stuck phase. At each interval of time, the interface force Fj,, is
compared to the dry friction effort uy- Fyn (equation (1)) to analyze the friction
interface state.

The exact instant where the system passes from one phase to another is found
accurately by using the Golden Section method [22]. The tangential force
continuity is carried out by determining the value Xy, (equation (2)).

System response can thus be obtained for a given excitation force.

3.2. BRIEF BEHAVIOUR ANALYSIS OF THE SYSTEM

These calculations must be carried out for various amplitudes of the exciting
force and for different frequencies. It is possible then to determine:

— For one amplitude of the excitation force, the relationship between the
amplitude of masses m; or m, and the excitation frequency (see Figure 3).

— The relationship between the displacement maximum of mass m, and the
amplitude of the exciting force whatever the excitation frequency. Each point of
this curve is then associated with a different frequency. This curve will be called
“friction peak limiter efficiency curve” and is derived from the maximum points
on the preceding curves.

Fortunately, these calculations only need to be made for one normal force Fy since
the governing equations can be non-dimensionalized by the variable Fy.

On the “friction peak limiter efficiency” curve, the three behaviour zones,
indicated by the different authors, can be clearly observed in Figure 4 :

— the first zone AB, where the displacement—force relationship is linear;
— the second zone BC, which has the appearance of a plateau. This zone
corresponds to the optimum efficiency of the friction peak limiter;
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— the third and last zone CD, where amplitude of the displacement increases
quickly.

Thus this system can be considered representative of a real system.

4. MOVEMENT SYSTEM ANALYSIS BY LIMITED STATES

In the numerical resolution, one system is in fact studied with two different
boundary conditions. Thus, complete movement is analyzed solely from the know-
ledge of the following two limited states:

o permanently stuck friction interface;
« permanently sliding friction interface.

The resolution associated with the stuck state does not present any difficulties,
since this problem is linear. The fundamental frequency of the stuck mode will be
called f; and the curve response C;.

In the second state, the solution is determined by decomposing the displacements
and applied forces in Fourier Series and by keeping only the first harmonic:

P(t) = P-sin(wt),

x(t) = X -cos(wt + ¢) (3)
. dpqg- Fy
=Ceq = o X 4)

Thus, the dry friction force puqFy- X/(|X|) is replaced by an equivalent damping
coefficient C,, with the value indicated in equation (4). If the response amplitude
X is taken at the preceding frequency, the problem becomes linear. The
fundamental frequency of the sliding mode will be denoted by f, and the curve
response by C,.

Let us analyze the force-displacement responses of these two systems, for a given
amplitude of the excitation force, and over a frequency range including the sliding
frequency mode and the stuck frequency mode.

At this stage, it is interesting to note, on these response curves shown in Figure 5,
two characteristic points I and S that play a very important role in the analysis:

— I is the intersection point between the two curves;
— S is the maximum of curve C;.

Ordinates of points I and S are respectively denoted by X; and X..

4.1. FIRST CONFIGURATION OF LOADING

Firstly, let us analyze this system in a stuck state. In this case, the effort exerted
on the mass m; by the friction peak limiter is proportional to X, but also to the
excitation force P since the system is linear. The interface force will be maximum for
an excitation frequency f = f;. Let us call P, the external force which, for an
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excitation frequency equal to f; creates a displacement of the mass m;, X;.,, such
that:

chr = ,usFN/kt' (5)

For this force P, and this frequency f;, the mass m, displacement is noted X ,.,.

If the force P is less than P, whatever the excitation frequency, and since the
behaviour is linear, the displacement X ; will be less than X .. The interface force
will therefore be less than the limited value ug- Fy and the non-sliding hypothesis is
correct.

The P, force value will be called “critical sliding force”. With the chosen
parameters, P, has the value of 0-22 N.

For an excitation force P in the range [0, P..], the peak limiter efficiency curve
must be a straight line and its gradient is given by the viscous damping coefficient
(see Figure 8(a)). The non-linear method obviously gives the same result. This
portion of curve is valid only if the displacement X is less than us- Fn/k, so the end
of this phase is directly linked to the value of ps.

4.2. SECOND LOADING CONFIGURATION: P SUPERIOR TO P

Now consider a loading amplitude, such that points S and I are situated on either
side of the critical value X ,,, represented by the straight line L (see Figure 5). B and
C are the two points of curve C; which has X,., for ordinate.

Let fz and fc be the excitation frequencies associated with B and C. The response

of the system, must now be studied as a function of the excitation frequency.
If the excitation frequency is less than fz or greater than fc, the displacement of
the mass m, is less than X, and therefore the system remains in a stuck state.
The response must be given by parts AB and CD of the curve C; as illustrated in
Figure 5.

For frequencies lower than fz, one question remains: can the system jump, after
an external perturbation, in the sliding mode? In fact, this is not possible since there
will always be an instant ¢t at which the speed of mass m; vanishes. At this moment,
boundaries conditions are those of the stuck state and the system will remain in this
state since the displacement is less than X,,.

This mechanical system cannot therefore have a bi-stable behaviour at these
frequencies. If the excitation frequency lies between fg and f¢, the displacement X ; is
greater than X ;... The force exerted by the spring k, (Figure 2), will then be greater
than pug- Fy and the system should slide (point B).

The response would be represented by the curve C, in Figure 5, but in this case of
force, the mode generates vibration amplitudes lower than the critical value X ,.,.
Therefore, the system cannot remain in this state. It must pass successively from
a stuck to a sliding state, and maximum amplitude will be limited to the value X ,.,.

The path taken by the system for a frequency in the interval [ f3, fc], should be
represented by the segment BC in Figure 5.

If these results are compared to those given by the complete non-linear analysis,
the response curve is exactly the same (see Figure 5), which validates this limited
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Figure 5. Variation of the amplitude X, with frequency ratio for P > P_.. B Non-linear simulation.

state analysis. Thus, for this range of effort, the friction peak limiter is remarkably
efficient because it does not allow the system to stay in either the sliding or the stuck
mode. A phase difference appears, which limits the energy supplied to the system. It
is this phenomenon which is at the root of the system’s efficiency.

4.3. THIRD LOADING CONFIGURATION

Finally, let us consider a loading amplitude, such that points S and I are now
above the critical sliding value (see Figure 6). For excitation frequencies lower than
fg or greater than f., by using the previous reasoning, the system response is
provided by the portions AB and CD of the curve C;.

For an excitation frequency equal to fg (point B), the system jumps to the sliding
mode, and can now be maintained in this mode because the amplitude of mass m, is
above the critical value X,.,.

Thus for this frequency, a discontinuity BG, due to a change in boundary
conditions, must appear on the response curve. The discontinuity found not only by
non-linear calculation, but also in tests by Toufine [23], can thus be explained.

On the portion GH, the sliding mode must then maintain its position since the
displacement of m, is greater than X,.. On the other hand, on the portion HC,
behaviour with stick slip, must be similar to the preceding case.
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Figure 6. Variation of the amplitude X, with frequency ratio for P > P...

With this analysis, system response should be provided by portions AB, BG, GH,
HC and CD of the different curves C; and C, as shown in Figure 6. Here also,
non-linear results give a response which is very near to those obtained by this
analysis.

The peak-limiter efficiency curve enables us to see that for P = 12 N, point G is
found at the beginning of the sliding quasi-linear zone of this curve. This point
corresponds to point C in Figure 4.

The analysis of this loading configuration shows that the friction peak limiter is
less efficient, but still prevents the system from remaining at the maximum value of
the sliding response curve (see Figure 6). Only when the frequency associated with
point B is less than the sliding mode frequency will the friction peak limiter lose all
its efficiency.

In this case, the only interest of the system is the energy dissipated by friction,
but this energy will rapidly become negligible compared with the energy lost by
viscous damping, because viscous energy is proportional to the square of the
amplitude, while energy lost by friction is simply proportional to the movement
amplitude.

5. PARAMETERS AFFECTING THE DRY FRICTION INTERFACE

From this response, it is possible to understand the influence of various para-
meters and the interest of dry friction. Three cases of loading are thus considered.
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5.1. LOADING P <P,

In this case, the system has a linear behaviour and the friction coefficient, ug,
controls the value the critical force P.. As ugs increases, as does P, and
X1 (equation 3). For this loading, the efficiency curve gradient is linked to the
viscous damping ¢, and the friction peak limiter is no longer useful.

5.2. LOADING P, <P AND X, < X, < X

For this range of loading, the system is at maximum efficiency. Points [ and S are
situated on either side of the critical sliding value. The two important parameters
that control the positions of these two characteristic points are

— the dynamic friction coefficient;
— the frequency difference between fundamental sliding and stuck modes.

Their effects on the system behaviour are analyzed in detail below.

Effects of the dynamic friction coefficient: To understand the effect of dynamic
friction, the interface is considered as characterized by two friction coefficients: The
static coefficient called pg and the dynamic coefficient called py. Three values for the
latter are considered: O, uq; and pg,, with 0 < pg; < pgs.

If the friction peak limiter efficiency curve is analyzed, point B in Figure 4 which
characterizes the beginning of the plateau, is the same whatever the value of the
dynamic coefficient, since its position is only linked to the static coefficient us.

Now, with the coefficient u4,, the equivalent viscous damping C., is greater in
equation 4 than with u4; and consequently the response curve of the sliding mode

100 Non linear simulation 1

X,*107°

10
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1 1 1 1 1 1
095 1.0 1-1 12
It

Figure 7. Variation of the amplitude X, with frequency ratio and dynamic coefficient .
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has a lower amplitude than that obtained with p4; in Figure 7. Thus, the intersec-
tion point I, associated with pug4, is found to below the value X,.,, while point I,
associated with pu4; is found to be above. Then for this excitation force, the
maximum response amplitude associated with ug4,, gives a point on the efficiency
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curve situated on the plateau, while for ug4,, the point is found in the quasi-constant
sliding zone. Consequently, the length of plateau and the efficiency of the system
increase as the value of iy becomes higher. Korkmaz had noted this effect of the
coefficient py on the system behaviour [24], but could not give any physical
explanation.

Now we can analyze the case where the coefficient y4 is zero and the coefficient g
is different from zero. In this case, the two points I and S can be found on either
side of the critical value if the frequency difference between the two sliding and
stuck modes is sufficient, and therefore the peak limiter efficiency curve plateau still
exists.

As Korkmaz indicated without being able to explain it, a friction peak-limiter
efficiency exists, even without dissipation of energy; the essential physical phenom-
enon is the change of boundary conditions that introduces phase differences and
limits energy provided to the system. The friction peak limiter is efficient, not
because of the energy that it dissipates, but because of the fact that it prevents
energy from being supplied to the system.

Therefore, the dry friction coefficient 14 is an important parameter for the friction
peak limiter efficiency only when the two stuck and sliding modes are very close. In
this case, as the coefficient y4 increases, so does the length of the curve efficiency
plateau.

In a real structure, the sliding mode is often fixed by design. To obtain a high-
efficiency zone of the friction peak limiter, it is necessary for point I to remain under
the line L. Clearly, the best solution consists of moving the stuck mode away from
the sliding mode.

5.3. LOADING P, <P AND X, < X, < X

For these forces, the curve gradient is linked to the energy dissipated by friction
and by viscous damping. The latter rapidly becomes predominant compared with
energy lost by dry friction, since it is proportional to the square of the amplitude
while the former is simply proportional to the amplitude. In this case the system is
not a really efficient means of reducing vibration.

6. CONCLUSION

Analysis of the simplified system shows that the friction peak limiter is efficient
only for a given loading range.

System behaviour can be summarized in Figure 8, where three behaviour
patterns appear associated with three ranges of forces:

(1) An initial loading where the amplitude of the excitation force is less than P,.
The response is simply given by the stuck mode curve and the problem is linear
(see Figure 8(a)).

(2) A second loading zone which begins for P > P, and where points S and I are
on either side of the line L defined by X ,.,. For this loading, the friction peak
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limiter is highly efficient, because the boundary conditions of the system change.
They pass successively from the stuck mode to the sliding mode (Figure 8(b)). In
this configuration, the energy provided to the system is limited. Therefore, the
friction peak limiter can be efficient, even without energy dissipation.

For this range of effort the maximum response amplitude corresponds to
a point on the efficiency curve which is situated on the plateau.
The boundary is reached at a force P, when the point of intersection of stuck
and sliding response curves cross in the vicinity of the critical sliding value
(Figure 8(c)).

(3) A third zone of force occurs when P > P,, when the friction peak limiter loses
its efficiency by letting the system switch to the sliding mode. Even if the friction
peak limiter continues to dissipate energy, this energy rapidly becomes negli-
gible in relation to that lost by viscous damping. In this case a significant
gradient reappears on the efficiency curve (Figure §(d)).

The study of the parameters shows that

« the friction peak limiter efficiency is high if the frequency difference between the
sliding and stuck modes is large;

« the dynamic friction coefficient is an important parameter only when the fre-
quency difference between the two mode is high.

These results can not only be incorporated into structural design but can also
improve the speed of numerical resolution methods since forces P, and P, can be
obtained rapidly.
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APPENDIX: NOMENCLATURE

equivalent viscous damping
frequency in Hertz

normal force

tangential force

spring constant

applied force

displacement

velocity

dynamic friction coefficient
static friction coefficient
frequency in rad/s
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